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SUMMARY An improved method based on a local
approximation technique is presented for predicting chaotic
time series. In the local approximation technique, a state
space is reconstructed from a time series using delay
coordinates and then a local predictor is constructed on the
basis of the motion of the nearest neighbors in the state
space. To increase the prediction accuracy of the local
approximation, a new method is proposed for selecting the
nearest neighbors in the state space. The efficacy of the
proposed method is demonstrated using chaotic time series
generated by the Ikeda map and the Hénon map.
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1. Introduction

Short-term prediction methods for chaotic time series are
being intensively studied [1]-[4]. The local approximation
technique [ 1], [2], one of the prediction methods for chaotic
time series, is outlined below. The first step is to reconstruct
a state space from a univariate time series using delay
coordinates [5]. The next step is to assume a functional
relationship between the current point and a future point in
the state space. To predict this future point, the nearest
neighbors of the current point are found in the state space
and then a local predictor is constructed on the basis of the
motion of the nearest neighbors. The relationship between
state space reconstruction and prediction accuracy was
discussed in detail by Casdagli et al. [6].

In the state space, the direction of the trajectory of the
nearest neighbor sometimes differs from the direction of the
trajectory of the current point. In such cases, the accuracy of
the prediction obtained using the local approximation
method decreases because the motion of the nearest
neighbors incorrectly approximates that of the current point.

To increase the prediction accuracy in such cases, this
paper proposes a new method for selecting the nearest
neighbors in a state space. The efficacy of the proposed
method is confirmed through numerical experiments using
chaotic time series generated using the lkeda map [7] and the
Hénon map [8].

Section 2 reviews the local approximation method.
Section 3 defines the proposed method for selecting the
nearest neighbors. Section 4 describes results of the
experiments on the prediction accuracy. Section 5
concludes the paper.

2. Local Approximation Method

This section reviews the local approximation method for
predicting chaotic time series [1]. Given a time series, x;, the
attractor can be reconstructed in an m-dimensional state
space by forming the delay vector

X=X Xion s X110 (D

where 7 is the time delay [5]. Assume that the box-counting
dimension of the attractor is D,. If m>2D,, then m-
dimensional delay vectors generically form an embedding of
the original state space {9]. Namely, the structure of the
attractor in the original state space is preserved in the m-
dimensional state space. The prediction is executed by
estimating the change of the trajectory with time in the m-
dimensional state space.

Assume that the observed values x; to x, up to time ¢ are
given and the value x,, , at time p in the future is to be
predicted. Using Eq. (1), the attractor is reconstructed from
the observed values x, to x,. The relationship between the
current point, X,, and the future point, X,, , on the attractor
is approximated by function F,

t+p?

X,.,=F(X). @)

In the local approximation method, the nearest n neighbors
X7, (h=1,2, -+, n) of X, are selected and then function F is
estimated on the basis of the relationship between X;, and
X7,.p- Topredictx,, , itis sufficient to determine only the
first element of X, ; it is not necessary to determine all m
elements of X,, ,. Accordingly, the value x,, , is estimated

using linear polynomial f,

Xivp = f(X)
=4ag ﬂg QX -y 3)
The coefficients ay, a,, -+, a,, are determined as

follows. For each point X; in the m-dimensional state space,
except X, the Euclidean distance r from X, is calculated:

r=ﬂX,-—X,|
! 172
=(L§) (Xiope =X, _40) ) . “)

By comparing r, the nearest n neighbors X; of X, are
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selected from among all points in the m-dimensional state
space. The coefficients a,, a,, ---, a,, can be calculated by
using a least-squares fit:

hgl (xT;.+p - f(XT,,))Z = min. (5)

The minimum number of n needed to give a unique solution
to the least-squares problem is m + 1; however, choosing an
n larger than the minimum number decreases the prediction
error.

3. Proposed Method

In the local approximation method, it is important to select
the nearest neighbors correctly. Through reconstructing the
attractor using delay coordinates, the nearest neighbors in a
reconstructed space may differ from the nearest neighbors in
the original space [6]. In such cases, even if the condition
for embedding, i.e., m > 2D, is satisfied, the direction of the
trajectory of the nearest neighbor sometimes differs from the
direction of the trajectory of the current point in the m-
dimensional state space. These incorrect nearest neighbors
decrease the prediction accuracy.

To increase the prediction accuracy in the above cases,
this paper proposes a new method for selecting the nearest
neighbors. To predict accurately future point X, , ,, it is
desirable to select the nearest neighbors, X4, of current point
X, so that future points Xr,, , of Xy, are also as close as
possible to X,, ,. However, it is difficult to select such
nearest neighbors because the value of X,, , is unknown.
Hence, the motions of nearest neighbors are investigated
retroactively to the past in this paper. Namely, the nearest
neighbors of X, are selected taking into consideration the
distance between X; . and X,_. as well as the distance
between X, and X,. For that purpose, the following equation
is introduced to replace Eq. (4):

r=wlX X, J+a-wix-x] | (6)

where w is a weighting factor. When w =0, Eq. (6) is equal

to Eq. (4). By using this new strategy for selecting the

nearest neighbors, it is expected that the motion of the
nearest neighbors better approximates that of the current
point. As a result, the prediction accuracy should be
increased.

In Fig. 1, it is desirable for predicting future point X, ,
to select X, instead of X, as the nearest neighbor of X,.
However, when the conventional method mentioned in Sec.
2 is applied, X, is selected as the nearest neighbor because
X, is closer to X, than X,. By using the proposed method,

a

X, can be selected as the nearest neighbor.
4. Experimental Results
Experiments were conducted on the prediction accuracy of

the proposed method. In the experiments, chaotic time
series generated by the Ikeda map [7] and the Hénon map [8]

were used.
The Ikeda map is a two-dimensional map,

X, =1+l (x,cost—y,sint),
Yoo =H(x,sint+y,cost), (7N

where 1 =0.4 — 6.0/ (1 + x2 + y2) and the parameter value is
w=0.7. The time series taken was the x coordinate starting
at x, =y, =0.3. Figure 2(a) shows the phase plot of the
Ikeda map.

The Hénon map is a two-dimensional map,

Xps1=Ynt 1 —Axf,,
yn+l=an’ (8)

where the parameter values are A =1.4 and B=0.3. The
time series taken was the x coordinate starting at
Xo =Y, =0.3. Figure 2(b) shows the phase plot of the Hénon
map.

Assume that observed values v; (i=1,2, ---, N) for N
steps, as well as their predicted values z; (i=1, 2, ---, N) are
given. The accuracy of the prediction is evaluated in terms
of relative error E:

©)

Nearest neighbors

Past point

Current point
.
Xi-1

Fig.1 A new method for selecting the nearest neighbors in
the local approximation technique.
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L steps starting from point s of the time series are used
as the training data for reconstructing the attractor. The
following N steps are used to predict p steps ahead. In other
words, based on past observed values v, v, |, =**, v,,, _, and
observed value v; at the current point, predicted value z, cpat
p steps ahead is estimated and compared to observed value
Vi, - This procedure is iterated for N times for i=s+ L to
i=s+L+N-1. Using these N predicted values and
observed values, the relative error E is determined.

The parameters are set as follows. Training data length
L is varied from 200 to 6400. Prediction data length N is set
to L. The time delay 7 is set to I. Time series data of 40,000
points each were prepared for the Ikeda map and the Hénon
map. For each value of L, 10 sets of test data were
constructed randomly selecting starting point s from the time
series data.

Figure 3(a) shows an example of the prediction results
for the Ikeda map with L =400, m=3, p=1, and n=8,
when the conventional method is applied. The predicted
value is nearly equal to the observed value for most
prediction points. However, there are a few points with
large prediction error. It is surmised that these prediction
errors are caused by incorrectly selecting the nearest
neighbors as noted in Sec. 3. By using the proposed method,
these points with a large prediction error can be eliminated
as shown in Fig. 3(b).

Figure 4 shows relative error E as a function of
weighting factor w for the Ikeda map. The parameters are
set as follows: m =3, p=1. The value of each point in Fig.
4 is the average for the 10 test data sets, as well as in the
following figures. As shown in Fig.4, the relative error can
be decreased by using weighting factor w. The reason why
the prediction error for w =1 is smaller than that for w =0
remains to be clarified.

Figure 5 shows relative error E as a function of training
data length L for the Ikeda map. The parameters are also set
as follows: m=3, p=1. InFig. 5, two cases of w = 0.3 and
w=0.5 are denoted for the proposed method. Similar
results are obtained for the two cases of n=8 and n = 16.

/

Xr4i
Xrel

0.2 1.2 ~1.8 1.5
x{ X’

(a) Ikeda map (b) Hénon map

Fig. 2 Phase plots of the Ikeda map and the Hénon map.

w

When the conventional method, namely w = 0, is applied for
the Ikeda map, points with large prediction error as shown in
Fig. 3(a) are generated for every value of L. Therefore, the
relative error is not significantly decreased when L is
increased. By using the proposed method, the nearest
neighbors can be correctly selected which substantially
decreases the relative error.

Figure 6 shows relative error E as a function of
prediction steps p for the Ikeda map. The parameters are set
as follows: m =3, n =8, w=0.3. InFig. 6, the two cases of
L =400 and L = 3200 are denoted. When p <4, the relative
error is decreased by using the proposed method. When
p =4, the prediction accuracy of the proposed method is
roughly equal to that of the conventional method. The
results show that the proposed method is effective for the
short-term prediction of time series of the Ikeda map.

Figure 7 shows relative error E as a function of
embedding dimension m for the Ikeda map. The parameters
are set as follows: p=1,n=8,w=0.3. InFig. 7, two cases
of L =400 and L = 3200 are also denoted. When m < 4, the
proposed method is very effective compared to the
conventional method. The minimum embedding dimension
of the Ikeda map is 3 because the condition for embedding is
m>2D, and D, of the Ikeda map is 1.32. However, when
the conventinal method is applied, the relative error for
m =3 is considerably larger than the minimum value of the
relative error obtained by changing m. By using the
proposed method, the relative error for m=3 is
approximately held to the minimum value. This implies that
when the proposed method is applied, it is not necessary to
seek the optimal embedding dimension for prediction
because a sufficient level of prediction accuracy can be
obtained at the minimum embedding dimension.

Figures 8-11 show some test results for the Hénon map.
The parameters of Figs. 8-11 are equal to the parameters of
Figs. 4-7. When the conventional method is applied for the
Hénon map, points with large prediction error such as those
shown in Fig. 3(a) are not generated because the nearest
neighbors are correctly selected. Accordingly, the relative

Predicted value
Predicted value

E=0.049 E=0.006

Observed value Observed value

(b) Proposed method
w=0.3)

(a) Conventional method

Fig.3  Predicted value vs. observed value for the Ikeda

map.
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Fig. 8 Relative error as a function of weighting factor for the Hénon map.
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Fig.9 Relative error as a function of training data length for the Hénon map.
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error is sufficiently decreased as L is increased as shown in
Fig. 9. The minimum embedding dimension of the Hénon
map 1s 3 because the condition for embedding is m > 2D,
and D, of the Hénon map is 1.26. The relative error for
m =3 is roughly equivalent to the minimum value of the
relative error obtained by changing m. When the proposed
method is applied for the Hénon map, the relative error is of
the same order as that obtained by the conventional method.

Some trial tests were conducted on continuous time
systems such as the Lorenz model [10] and the R&ssler
model [11]. The results show that the prediction accuracy
of the proposed method nearly equals the prediction
accuracy of the conventional method. The proposed method
is also usable for continuous time systems.

5. Conclusion

This paper proposed an improved method based on a local
approximation technique for predicting chaotic time series.
To increase the prediction accuracy of the local
approximation, a new strategy was employed for selecting
the nearest neighbors in a state space. By using chaotic time
series generated by the Ikeda map and the Hénon map,
numerical prediction experiments were conducted. As a
result, the efficacy of the proposed method was confirmed.
In future work, the proposed method will be applied to real-
world data.
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